A Deep Learning Approach to the Prediction of Short-term Traffic Accident Risk
نویسندگان
چکیده
With the rapid development of urbanization, the boom of vehicle numbers has resulted in serious traffic accidents, which led to casualties and huge economic losses. The ability to predict the risk of traffic accident is important in the prevention of the occurrence of accidents and to reduce the damages caused by accidents in a proactive way. However, traffic accident risk prediction with high spatiotemporal resolution is difficult, mainly due to the complex traffic environment, human behavior, and lack of real-time traffic-related data. In this study, we collected heterogeneous traffic-related data, including traffic accident, traffic flow, weather condition and air pollution from the same city; proposed a deep learning model based on recurrent neural network toward a prediction of traffic accident risk. The predictive accident risk can be potential applied to the traffic accident warning system. We ranked the predictive power of various factors considered in our model through the method of Granger causality analysis, and established the order of predictive power as traffic flow > traffic accident > geographical position weather + air quality + holiday + time period, which indicate that traffic flow is the most essential factor for the occurrence of traffic accidents. The proposed method can be integrated into an intelligent traffic control system toward a more reasonable traffic prediction and command organization.
منابع مشابه
Adaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملP-V-L Deep: A Big Data Analytics Solution for Now-casting in Monetary Policy
The development of new technologies has confronted the entire domain of science and industry with issues of big data's scalability as well as its integration with the purpose of forecasting analytics in its life cycle. In predictive analytics, the forecast of near-future and recent past - or in other words, the now-casting - is the continuous study of real-time events and constantly updated whe...
متن کاملA neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.09543 شماره
صفحات -
تاریخ انتشار 2017